New results on pathwise uniqueness for the heat equation with colored noise

نویسندگان

  • Thomas Rippl
  • Anja Sturm
چکیده

We consider strong uniqueness and thus also existence of strong solutions for the stochastic heat equation with a multiplicative colored noise term. Here, the noise is white in time and colored in q dimensional space (q ≥ 1) with a singular correlation kernel. The noise coefficient is Hölder continuous in the solution. We discuss improvements of the sufficient conditions obtained in Mytnik, Perkins and Sturm (2006) that relate the Hölder coefficient with the singularity of the correlation kernel of the noise. For this we use new ideas of Mytnik and Perkins (2011) who treat the case of strong uniqueness for the stochastic heat equation with multiplicative white noise in one dimension. Our main result on pathwise uniqueness confirms a conjecture that was put forward in their paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convergence of Population Processes in Random Environments to the Stochastic Heat Equation with Colored Noise

We consider the stochastic heat equation with a multiplicative colored noise term on Rd for d ≥ 1. First, we prove convergence of a branching particle system in a random environment to this stochastic heat equation with linear noise coefficients. For this stochastic partial differential equation with more general non-Lipschitz noise coefficients we show convergence of associated lattice systems...

متن کامل

Pathwise uniqueness and continuous dependence for SDEs with nonregular drift

A new proof of a pathwise uniqueness result of Krylov and Röckner is given. It concerns SDEs with drift having only certain integrability properties. In spite of the poor regularity of the drift, pathwise continuous dependence on initial conditions may be obtained, by means of this new proof. The proof is formulated in such a way to show that the only major tool is a good regularity theory for ...

متن کامل

Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component∗

We prove pathwise uniqueness for an abstract stochastic reaction-diffusion equation in Banach spaces. The drift contains a bounded Hölder term; in spite of this, due to the space-time white noise it is possible to prove pathwise uniqueness. The proof is based on a detailed analysis of the associated Kolmogorov equation. The model includes examples not covered by the previous works based on Hilb...

متن کامل

Martingale and Pathwise Solutions to the Stochastic Zakharov-kuznetsov Equation with Multiplicative Noise

We study in this article the stochastic Zakharov-Kuznetsov equation driven by a multiplicative noise. We establish, in space dimensions two and three the global existence of martingale solutions, and in space dimension two the global pathwise uniqueness and the existence of pathwise solutions. New methods are employed to deal with a special type of boundary conditions and to verify the pathwise...

متن کامل

On Pathwise Uniqueness for Stochastic Heat Equations with Non-lipschitz Coefficients

Here denotes the Laplacian and Ẇ is space–time white noise on R+ ×R. It is known that uniqueness in law holds for solutions to (1) in the appropriate space of continuous functions and such solutions are the density for one-dimensional super-Brownian motion (see, e.g., Section III.4 of [4]). One motivation for studying pathwise uniqueness is the hope that such an approach would be more robust an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013